IAEA-CN-191-144

Assessing the sources of suspended sediments in the streams of an agricultural watershed in the Canadian prairies using ¹³⁷Cs as a tracer

P.N. Owens – University of Northern British Columbia, Canada – owensp@unbc.ca A.J. Koiter – University of Northern British Columbia, Canada D.A. Lobb – University of Manitoba, Canada E.L. Petticrew – University of Northern British Columbia, Canada K.D. Tiessen – International Development Resource Centre, Canada S. Li – Agriculture and Agri-Food Canada, Canada

Lake Winnipeg Water Quality Issues

- Declining water quality over the past few decades
- 30-40% of Manitoba's contribution of N and P to the lake comes from agriculture

Blue-green algal bloom at Grand Beach

Satellite image of algal bloom

Lake Winnipeg Water Stewardship Board (2006)

South Tobacco Creek Watershed

- Located in south-central Manitoba
- Primarily agricultural land use
- Drops ~ 200m in elevation as it drains off the escarpment into the lowlands of the Red River Valley
- Part of a national project aimed at measuring the economic and water quality impacts of different agricultural practices

Sampling Locations

Google Maps (2012)

Sampling

- At each site we sampled:
 - Sources: streambanks, fields and riparian areas
 - Sediment: suspended and bed
- All samples were dried and sieved to <2 mm to remove stones
- Samples were analyzed for ¹³⁷Cs using gamma ray spectroscopy

Streambank Sources

- 3 profiles at each sampling site
- 10 cm increments

Field and Riparian Sources

 Transects were used to characterize the field and riparian sources

Characterization of Sediment Sources

- Low ¹³⁷Cs activity in bank sources with some interesting outlying points
- Increasing ¹³⁷Cs activity as we move from the fields towards the riparian areas

¹³⁷Cs provides good discrimination between upland and stream bank sources **Sediment Sources**

Suspended Sediment

- Paired time-integrated samplers fixed to the stream bed
- Collected periodically over the year

Bed Sediments

Collected at each site

Shoals of bed sediment

Suspended Sediment

Suspended Sediment

Bed Sediment

Geochemistry – Titanium

Geochemistry – Arsenic

Sediment Colour

 Visually see a change in the sources of sediment as reflect by a change in the colour of the sediment

Changes in Sediment Sources

- Within the transition zone from the top to the bottom of the escarpment we see steep banks and bank failure
- High input from channel bank sources may overwhelm the ¹³⁷Cs signal

Sediment Storage

- Sediment storage within the watershed
 - Floodplain deposits
 - Beaver dams

Conclusions

- ¹³⁷Cs results show a switch in sediment sources
- Upper reaches field and riparian sources
- Lower reaches streambank sources

Headwaters

Conclusions

 Beyond the watershed there is some evidence that the source of sediments may switch back to being dominated by field and riparian sources

Future Work and Challenges

- Continue sampling throughout 2012 and beyond
- Un-mixing model to estimate contributions
- Nutrient dynamics
- Understanding
 - the role of scale emergent processes?
 - role of the escarpment influence of geomorphology?

